
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Virtualized network framework solution to
collecting private research data NEMESIS:
Network Experimentation and Monitoring in
Environments Safely In-Situ
Alexander Nicholas Pease
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pease, Alexander Nicholas, "Virtualized network framework solution to collecting private research data NEMESIS: Network
Experimentation and Monitoring in Environments Safely In-Situ" (2009). Graduate Theses and Dissertations. 10581.
https://lib.dr.iastate.edu/etd/10581

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10581?utm_source=lib.dr.iastate.edu%2Fetd%2F10581&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Virtualized network framework solution to collecting private research data NEMESIS:

Network Experimentation and Monitoring in Environments Safely In-Situ

by

Alexander N Pease

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering & Information Assurance

Program of Study Committee:

Thomas E. Daniels, Major Professor
Doug Jacobson
Cliff Bergman

Iowa State University

Ames, Iowa

2009

Copyright ©Alexander N Pease, 2009. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF FIGURES iv

ABSTRACT v

CHAPTER 1. Introduction 1
1.1. NEMESIS 2

CHAPTER 2. Background 5

Chapter 3. Implamanation and design 10
3.1 Introduction 10
3.2 Core design components 10

3.2.1 Virtual network infrastructure 10
3.2.2 Communication infrastructure 12
3.2.3 Policy management and enforcement 16

3.3 Process for a research experiment 17
3.3.1 Initial contact and agreement 19
3.3.2 Virtual machine creation and deployment 20
3.3.3 Collecting results from the experiment virtual machine 21

CHAPTER 4. Test setup 23
4.1 Host System 23

4.1.1 Operating system 23
4.2 Alpha test 24

4.2.1 Network for alpha test 24
4.2.2 Virtual machines for alpha test 26
4.2.3 Results for alpha test 27
4.2.4 Test system fix for alpha test 28

4.3 Full feature beta test 30
4.3.1 Network for beta test 31
4.3.2Virtual machines for beta test 32
4.3.3 Traffic recorder 35

CHAPTER 5. Conclusion 36
5.1 Successes 36
5.2 Limitations 38

CHAPTER 6. Future work 39

APPENDIX A. Brctl help 40

APPENDIX B. KVM help 41

APPENDIX C. Mount script 43
Very basic setup guide 43

BIBLIOGRAPHY 46

www.manaraa.com

iii

ACKNOWLEDGEMENTS 48

www.manaraa.com

iv

LIST OF FIGURES

Figure 1. NEMESIS node 3
Figure 2. Collaboration example (by Thomas E. Daniels PHD) 4
Figure 3. How a virtual machine manager works 9
Figure 4. Disk level view of virtual machine infrastructure 12
Figure 5. NEMESIS live network data view 14
Figure 6. NEMESIS with sanitized data being replayed to the virtual machines 15
Figure 7. Process diagram 18
Figure 8. Alpha test network 25
Figure 9. Alpha test WireShark fix 29
Figure 10. Virtual network configuration for Figure 6 30
Figure 11. Beta test network 31

www.manaraa.com

v

ABSTRACT

The cyber security research realm is plagued with the problem of collecting and using

trace data from sources. Methods of anonymizing public data sets have been proven to leak

large amounts of private network data. Yet access to private and public trace data is needed,

this is the problem that NEMESIS seeks to solve.

 NEMESIS is a virtual network system level solution to the problem where instead of

bringing the data to the experiments one brings the experiments to the data. NEMESIS

provides security and isolation that other approaches have not; allowing for filtering and

anonymization of trace data as needed.

 The solution came about from a desire and need to have a system level solution that

leveraged and allowed for the usages of the best current technologies, while remaining highly

extendible to future needs.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

The NEMESIS idea came about from the research that is being conducted at Iowa

State University and the needs of other researchers. The computer security and networking

fields currently have a problem that is persisting. The problem is that of using research data

sets. There are not a lot of public data sets and those that are in existence are designed for a

particular problem. If researchers are looking to test a new anomaly based intrusion

detection system, the researcher would need a current data set and multiple data sets over a

period of time from an enterprise network. Problems persist trying to get this type of trace

data from enterprise networks.

Most enterprise networks don’t want information about their internal network to

make it to the outside of their network. That information is private and they want to protect

it, in fact most have security policies preventing that information from leaving the network.

In this case the organization might allow for a private trace to be collected on a limited

segment of their network, and then allow the researcher access to that trace and the

researcher’s results could be public but the trace would be private and not allowed to be

shared or examined. Another common option is public sanitized data sets, this where an

organization has released data to the research community but has sanitized and anonymized

the data. Both choices have their own problems.

Private data sets can be hard to negotiate for, and then the results, since the data set is

private cannot be verified by another researcher. That is to say that another researcher cannot

run his tests on the same data set to verify that what is identified is in the trace. Sanitization

is not a complete solution and allows for many different kinds of attacks, and data leakage.

www.manaraa.com

2

This paper will explain some of the attacks on anonymized network data, and how allowing

the release of anonymized network data can leak sensitive private information about the

network or individual users.

1.1. NEMESIS

NEMESIS, Network Experimentation and Monitoring in Environments Safely In-

Situ, solution is a systems level approach to the problem of using and collecting network

trace data that allows for in place experiments to be run. This solution takes the experiments

to the trace data owner; instead bring the trace data to the experiment, allowing for the trace

data owner to have more control over what information gets release and give some added

protection against future attacks on the released network traces since no network traces are

released. In figure 1 below a big picture view of NEMESIS is presented. NEMESIS consists

of multiple parts. There is a Virtual Framework peace and a policy management peace that is

used to control and implement policies on the virtual framework system. This paper address

the virtual framework system and makes suggestions at some of the tools for implementing

some of the policies. This paper does not discuss in detail or address how the policy

management system should be implemented. For the policy management in the paper the

network monitoring policies are implemented by the use of software firewalls since standard

networking is used to control data flow between host and virtual machine. The policy

management will need to be implemented with the given data flow and control piece. This

paper proposes one possible implementation of the NEMESIS idea with virtual machines and

the use of existing virtual network technologies.

www.manaraa.com

3

Figure 1. NEMESIS node

A quick overview of the process and to aid in explaining the NEMESIS idea is figure

2 is a conceptual drawing of process flow. The three columns represent the 3 actors that we

wish to collaborate during the experiment. The researcher has an idea and then a design is

worked out with a developer. The researcher and the trace owner negotiate privacy concerns

reach an agreement, and then development beings. Development and local testing begin

since once the experiment is deployed the trace owner the researcher will only get the results

back. The virtual machine that was developed is deployed to the trace owners NEMESIS

node and the experiment begins, and runs autonomously. When the experiment ends, the

result are analyzed and if they meet the agreed upon terms, they are released to the researcher

for publication.

www.manaraa.com

4

Figure 2. Collaboration example (by Thomas E. Daniels PHD)

NEMESIS utilizes virtual machines to leverage the existing technologies and allows

for multiple experiments to be run on the same hardware, reducing the server footprint on an

enterprise network and allowing researchers to build their experiment with the tools they

want to use and not through a custom programming or query language. This would allow

form multiple tools to be run like snort (a common Intrusion Detection System) and custom

tools and correlate the results. For the data that is sent back to the researcher.

www.manaraa.com

5

CHAPTER 2. BACKGROUND

There are many solutions to the problem of dealing with trace data. The solutions

range from anonymization to custom languages. This section will address the previous

solution, their failures, and the need for a complete solution. This section will discuss the

core components of NEMESIS.

Anonymization and sanitization of trace data, was the first solution purposed and is

still seen as the front running solution. Anonymization allows for the protection of private

network information. Packet body’s can be sanitized or removed, IP address can be mapped

to new IP address. There are three main ways to do anonymization Partial, Full, and N-Flow

anonymization. Recent work has proven that removing payloads and host IP address does

not alone protect the privacy of the trace. [Brekne 14]

Partial or pseudo anonymization involves some preservation, where as subnets would

be preserved, however changed. So the octets would be the same for any address coming

from that octet. For example 123.0.0.0 would map to 444.X.X.X, and 123.1.0.0 would map

to 444.340.X.X. In some cases such as Crypto-PAn cryptographic methods are used to

anonymize the trace data. These methods are subject to cryptographic attacks on the

algorithm. [Brekne 14] Full anonymization is when the IP address fields are randomized and

the payload is stripped. When this is done the data set becomes less useful to researchers.

[Mirkovic 13]

 TCPdpriv is a tool that executes on tcpdump trace files and performs anonymization

on these files. TCPdpriv removes sensitive information by operating only packet headers the

payload is fully removed. TCPdpriv can do full stripping, prefix-preserving psedo-

www.manaraa.com

6

anonymization of network trace preserving topology for the researcher incase this is needed

for the results. While running TCPdpriv maintains a list of IP address mappings in memory.

Crypto-PAn is a tool much like TCPdpriv allowing for one-to-one maps between IP

address in source and result trace and prefix preserving. Because Crypto-PAn is based on

cryptographic methods using a key to determine the mapping, as long as the same key is used

the same mapping can persist across multiple sessions. The tool is based on Rijndael cipher

for cryptography. [Fan 9] Crypto-Pan only works on IP address s and the 8 most common

fields of NetFlows, since releasing NetFlows is better than releasing full traces.

Anonymization is a balance between trace owner privacy and effectiveness of the

trace to researchers. This is a problem since there are a number of attacks on anonymized

traces. The attacks are passive and active. Passive attacks are those that take the public trace

data and other public data to infer private data. Active attacks are those that involve doing

something while the trace is being collected that can be identified and used to break the

privacy of the trace. [Mirkovic 13]

A passive attack example would be using packet length field to identify what

websites a particular host has visited. This can be done when all replays are observed within

one tcp connection or a summarized Net Flow. The use of ARP data, subnet clustering and

publicly available DNS records can be used to get network topologies, determine observation

points, and some host matching [Coull 1].

Active attacks include injecting data in at the time of capture that can be pulled out in

the public trace and used to break the anonymization. To do this one would spoof source and

destination address and then make the header or traffic flow pattern identifiable in the trace

www.manaraa.com

7

so that the information can be pulled out later. Details are given in [Brekne 14] on who to do

injections and active attacks.

The next solution presented to the problem of using private trace data, while

preserving the data. This solution relates in many, but limited ways to the solution that this

paper purposes. In 2006 at SIGCOMM’06 workshop, SC2D was presented. SC2D is a

framework and programming language designed and proposed as a way of bringing research

to the data. Instead of getting the data trace from an organization and running tests on that

trace. SC2D purposed that the data remain at the organization and that they have a server,

which the experiments are run on. This approach utilizes a modular interpretive language.

The researcher would develop a module that then would be run and the results returned to the

researcher. The framework handles anonymization at a lower abstraction level than what the

user programs in. The paper also outlines process for code review, although never tried. The

prototype was based and written in BRO IDS, and had performance issues and management

of multiple project issues. Conclusion: this a tool in which researchers write their tests in the

framework and interpretive language and get the results sent back to them. However if their

result rely on correlation of data from existing tools and their tool, the researcher would need

something more to be able to get the results they are looking for. {Mogul 5]

The next paper and work that this paper addresses is using secure quarries to query

trace data preserving privacy. Although Mirkovic was not the first to suggest secure queries,

she presented the idea of dealing with the privacy concerns in the query language and

database. The system works by imputing the trace data into a database, then the researchers

write their programs to query the data or run off the returned data from the queries. The

query language restricts queries on some data fields and some contexts. Results returned

www.manaraa.com

8

from this purposed solution are not raw packets but aggregate data. The advantage of this

system over anonymized trace data lays in fine grained controls and control over the portal to

access data. The Portal controls can monitor usage patterns and control if a user is using

multiple queries to get at information that when correlated would reveal privacy-sensitive

information. This solution has not been prototyped.

No single prevented solution is enough and is a perfect solution. My solution is not

perfect either; however it is a complete solution with the ability to be expanded for future

needs of researchers.

Virtualization and virtual machines has been seen as a way to run multiple servers on

the physical hardware of one server, since space is a comity in a server farm, and server

generally don’t use all their resources. Virtualization also can add another level of security

features, first the servers can have images made of them at a given state and restored if a

problem occurs. Virtualization also adds a layer of protection since there is either a

hypervisor or host OS (DOM 0). So in order to make system calls all commands go through

the hypervisor. All normal security percussion must still be kept and the physical device,

hypervisor or DOM 0 must still be hardened. The solution proposed in this thesis can be

implanted with either a DOM 0 or a hypervisor approach. Though the implantations very

some. With virtual machines the physical device still can control the network adapter and

thus the traffic seen or allowed out of any VM can be controlled allowing for firewall in front

of every Virtual machine that is not located on the virtual machine. Thus each server can

have custom rules in place on the DOM 0, while the DOM 0, could see all traffic going to

any VM. Virtualization can be used to help with the security in depth model. In the cpirse

of this project’s research KVM a DOM 0 approach, and VMWare ESXi a hypervisor

www.manaraa.com

9

approach were examined. The main difference between a DOM 0 and a hypervisor approach

is how resources are managed and allocated. The figure 2 shows how a virtual machine

manager works. The virtual machine manager passes and controls the access to the physical

hardware.

Figure 3. How a virtual machine manager works

www.manaraa.com

10

CHAPTER 3. IMPLAMANATION AND DESIGN

3.1 Introduction

This chapter focuses on the design and implementation of NEMESIS. It looks at the

design goals and constraints of existing technologies, how some technologies presented

unique problems, how those challenges were, overcome or a proposed solution that will be

future explained in future work. Also a process flow is suggested on how to use the proposed

solution with a breakdown of the steps in the process flow.

3.2 Core design components

The core pieces to the design approach are a Virtual Network infrastructure,

communication interface, Policy management and enforcement.

3.2.1 Virtual network infrastructure

Hypervisor, a term that finds it roots in mainframes is software that allows multiple

host Operating System(OS) to run on the same physical hardware also referred to as virtual

machine monitor (VMM). Two types of VMM exist the first type is that which runs directly

on the hardware the second runs in a host OS often referred to as DOM 0 or host OS with

Virtual machines being referred to as guest OS. As mentioned in the previous section both

types could be used to complete this project. The design constraints and needs of the VMM

for this project were simple, The VMM needs to be able to run multiple VM experiments at

the same time, be highly extendible to future needs and be useable, capable of running

multiple different OS from Linux to UNIX to Windows. The VMM must be able to separate

www.manaraa.com

11

the privileges of one VM from another. There needs to be a way of pulling results off of the

VMs from the host OS or have results pushed from VM to Host OS.

Hypervisor type 2 was selected since it allows for better use of current existing

technologies running on the host OS and allowed for us of open source technologies that

could be expanded or customized in the future for implementations. Running a VMM on a

host OS allows for tools to be written in kernel or user space to help with the management or

expansion of the solution.

The VMM that was select was Kernel-Based Virtual Machine KVM. KVM is a

derivative of KQEMU which is QEMU accelerator that provides a way to run user mode

code on the host CPU and some Kernel code on the Host CPU rather than the emulated CPU.

KVM utilizes the Intel and AMD CPU virtualization support designed into the micro

processor to do some optimization, and it does allow for privately virtualized NICS, hard

drives.

One of the most important factors in choosing a type 2 VMM is the ability to pull

results off the VM once the VM has been stopped running. With KVM this can be done in

multiple ways the first way which is what we outline is to have the VMs create a folder in the

root directory of the VM disk image called results. The VM writes its results to this folder,

when the VM experiment is completed and the VM is shutdown then the Host OS can mount

the disk image as a directory and copy off the results folder to its own results patrician, where

the results can be analyzed, and thus allowing for a fully autonomous process in the future.

The second possibility is for the Host OS to create a disk image, that is limited in size and

then the guest OS mounts this virtual disk and write results to this patrician which are later

copied off as describe in possibility one. This paper recommends solution 2 since it utilizes

www.manaraa.com

12

solution one with adding overall size constraints on the results set. Which is determined to

be a problem can be addressed by using a policy, which limits results to the remaining space

of the guest OS virtual machine as agreed upon in policy discussions of the experiment.

Figure 3 below shows a disk level view of the solution and how the results could be written.

Figure 4. Disk level view of virtual machine infrastructure

3.2.2 Communication infrastructure

Once KVM was selected as the VMM the next step was to determine how the trace

data or network traffic would get to the VMs. The obvious choice would be to use virtual

network interfaces, for a prototype this is a possibility, however some fine grained filtering

and packet alteration, might need something more in the future. The design issues for the

communication interface stems from the idea of having multiple VM running on the same

physical hardware. Each virtual machine needs to be able to receive different traffic or

different portions of traffic. Adding a custom kernel device might be a better choice down

the road than using the standard virtual network interface. KVM uses tun/tap devices which

www.manaraa.com

13

are virtual Ethernet devices; a tun device only functions at the IP layer and not the full

Ethernet layer where as a tap device functions at the full Ethernet layer. When creating the

virtual interface for the VMs one would need to create tap devices since the full Ethernet

headers are needed. In testing it was show that if a tun device is used even if a bridge is in

promisc mode, so thus acting as a hub, since a tun device is a layer 3 IP device it functions as

a switch only accepting traffic bound for the other side of the tun interface. Interestingly

enough the tool used to make static tun/tap interfaces, tunctl, by default is set to create tap

interfaces. However, the Debian package that contains tunctl is UML-tools and it is

compiled to create tun devices only. On a Debian machine one must compile tunctl from

source, on a Fedora machine there is a RPM for tunctl that works fine.

Once you understand how to create and make virtual interfaces, and bind them to a

VM it is important to understand the other network tools that will help build a virtual

network and firewall the interface so that the experimental VM do not send any traffic out in

the instances that they may be bridged to a real network interface for a direct network tap.

 There are two different potential types of trace data that could need to reach the VMs.

The first potential would be live trace data. The virtual interface is bridge directly to a real

interface, or bridged to a virtual interface that is bridged to a real interface. In this Case the

Trace data would need to within reason and reliable with expectable packet lose get to the

Guest OS’s virtual interface. The tool in Linux that is used to make static bridges is “brctrl.”

Technical details on how bridge control will work are given in appendix A. The basic tools

that can be used in Linux to filter on a bride are known as ebtables. They function the same

way that iptables function in Linux as basic firewall rules filtering on port, ipaddress,

protocol. In some cases when listening on a tap point on a network the port the interface that

www.manaraa.com

14

is being forward to the VM is connect to a Network TAP and can only receive on side of the

conversation. In this case two taps would be need one listening on each side of the

conversation and the two trace would have to be reassemble much the same way Paxson did

with the data collected at LBNL [Paxson 21]. Figure 4 shows an example network view of

a NEMESIS running on live network data.

Ebtables or bsd bridged-firewall
hub

Vm(1)

Vm(…)

Vm(n)

No

Yes

Network View

Internal NEMESIS Node network

NEMESIS Node

Figure 5. NEMESIS live network data view

In the instance where a network trace is present, and not live trace data. When using

virtual network interface to transport recorded trace data from host to client machine one

www.manaraa.com

15

could use TCPReplay to replay the recorded trace on the host OS directly on the virtual

interface of the guest OS running the experiment. This would allow for the trace data to be

recorded in advance and then feed through anonymizers, such as Crypto-PAn before being

played to the VM if one is still concerned about privacy leakage. Figure 5 shows NEMESIS

running on recorded sanitized network data.

Ebtables or bsd bridged-firewall
hub

Vm(1)

Vm(n)

No

Yes

External Network View

Trace Data
Function on trace data Sanitized

trace data

Sanitized
trace data

TCPReplay

Network Trace Sanitization Function

Physical Server Internal Network View

Figure 6. NEMESIS with sanitized data being replayed to the virtual machines

 Problems that must be discussed with the use of virtual network interface as the

primary way of moving trace data between host and guest OS for the purposes of test. When

a virtual interface receives a packet a context switch is requested to handle that packet.

Packets are queued however some packets are lost during context switches in observation

www.manaraa.com

16

there was observed packet lose, however it was limited and but further testing would be need

for a conclusion on using virtual interfaces in a production environment. A suggested

optional replacement was a kernel module that handles the networking and queuing of

packets. The second replacement option would be Ethernet-over-IP this would encapsulates

the Ethernet frames in IP frames and transmit the request frame to a given guest OS. In this

case a module might need to be written to filter or handle the different frames going to

multiple VM on the same bridge or cloning of packets so that they could be forwarded to

different experiments.

3.2.3 Policy management and enforcement

Policy management and enforcement has multiple steps. An organization that owns

the trace data thus forth referred to as the owner, will have policy regarding privacy and

sensitive information leaving the organization’s network. An example might be that

internally sending SSN is expectable but they are not to be sent out of the network. Another

example might be that no information containing information about the internal network

topology and sub netting scheme should be release to the general public.

Organization have developed policies on what information can leave their network

and most likely will have policies on what machine can be brought on to their network,

virtual or physical. The organization must also examine what information they are willing to

allow a research experiment access to on their network. This might vary from a standard

machine on their network, since the creator and end user of the machine is not an employee

of the organization. This is where anonymization has traditionally come into play. There

www.manaraa.com

17

would be detailed discussions on policy between the researcher and the organization on what

they would be willing to expose and what they would want to have sanitized.

One of the design goals of moving the experiment to the trace owner instead of bring

the trace to the experiment is that this discussion would be minimized. Instead of completely

sanitizing the trace, to a point where it could have impact on the results. The policies can be

enforced on the data that leaves the trace owner. The results returned from the experiment

can be where the policies are enforced. It is the hope that in the future that the policy

enforcement can be automated, but in this prototype it is done by human interaction by

examination of the results. Trust is a common problem with all trace data collection and

usage solutions. It is a problem here, if there is noise in a system than there is room for a

covert channel. When the results are returned to the research sensitive information could be

released in carefully crafted results. This would be an example of an active attack on the

virtual infrastructure system. Much like packet injection works on anonymization solutions

if one injects data into the results it is almost undetectable due to noise. However this can be

minimized based on the noise in the data results that are agreed upon. If the results are a

comma delimited file of alerts returned or simple numbers that represent data points, there is

some noise there, however, if the results are number of events and counts, aggregate the risk

could be reduced.

3.3 Process for a research experiment

This subsection outlines the process flow that a typical research would go through

with an organization using this solution. The following Figure 6 is an overview that will be

broken down of the process flow.

www.manaraa.com

Figure 7. Process diagram

18

www.manaraa.com

 19

3.3.1 Initial contact and agreement

Organizations need to develop polices about network traffic. Organizations need to

have security and privacy policies. Having the policy in place helps to know what do in a

circumstance when an incident occurs on the network. These policies would help to govern

the discussions on what data the experiments and research would be privy to for the

experiments. Policies should be discussed at all levels of management and with legal taking

in the concerns of the security and networking teams.

Researchers start with a problem or a question to be addressed. Once they have a

question and determine that they need trace data for their solution. The data may be needed

for testing or comparison. The research needs to see if a publically available data set exists

that they can use, if there is a set they should do testing with that data, set while looking for

an organization that has the NEMESIS node in place. Once an organization is identified the

researcher would write up their needs for the data, types of data, results and research question

they want to address and begin a dialogue with this information with the organization. The

organization is going to need detail to determine if they can help the researcher.

Negotiations between the researchers and the organization now begin. Up until this

point the organization has agreed that they could help but not the specifics of the data that

they will be able to expose to the researchers. The organization knows the research problem,

needs, and desires of the researchers. The organization then evaluates this against the

predetermined policies, and what results they can allow out of the network. The organization

must evaluate what trace and network data they can allow the researchers to see. Then they

must determine what results can leave there network. What is an acceptable risk, if the

www.manaraa.com

 20

results returned can simply be aggregate data? By controlling what results leave the network

the organization can make an effort to prevent future attacks on the results. When a network

trace is released to the public anonymized or not there is no way to prevent against future

new attacks. This is best observed by the example of Pang’s attacks on the data that Paxson

collect at LBNL [LBNL 21]. The discussions will go back and forth until an agreement is

made or it is determined that the needs of the researcher cannot be met by the organization

due to policy or data leak concerns.

3.3.2 Virtual machine creation and deployment

At this stage in the research process an agreement has been reached, and now

development on the test VM can begin. While a scheduled test date has already been agreed

upon the experiment VM must be built since size, traffic, result, memory, and CPU

limitations will all have been outlined. These are all needed when constructing the virtual

machines to understand performance needs, disk space and memory limitations so that way

in the middle of the experiment the VM doesn’t have to constantly be paging out memory or

be pegging the CPU. For example if the VM was to use snort and it had limited memory the

research may need to turn on the “lowmen” flag. The VM must also be able to complete

itself write data to the results directory by the stop date, and be autonomous since it will be

started and have no interaction other then booted once it leaves the researcher and is sent to

the organization. Since the VM will be autonomous there will need to be extensive testing

complete on the part of the research. By using all open source tools the researcher can create

a test network to mimic the organization and thus minimize all integration concerns. The

VM shall be sent with its start script since in some cases the start scripts can be long. Some

www.manaraa.com

 21

parts of the script will be defined by the organization, since the organization will most likely

want the device to have the n graphics option enabled. This option simple removes the x

display mapping of the VMs display; included in appendix B is the man pages for KVM

along with all the start options.

3.3.3 Collecting results from the experiment virtual machine

Before the scheduled shutdown time for the VM it should write its results to the

results segment on disk as agreed upon in the agreement stage discussed earlier. The results

are then pulled off the VM and moved on to the Host OS. Once on the host OS the results

can be compared against the agreed upon policies and the experiment VM and disks can be

zeroed and removed. Tools can be ran on the results to detect pattern matching, whether

internal network IP schemes are being leaked, raw trace data is being released through the

results, unsanitized logs with raw trace data contained are being released, network

vulnerabilities, basically any information other than what is agreed upon. If the agreed upon

results carry a lot of noise then there would be room for a covert channel this exists in al

systems, including sanitization.

If the results are found to b in violation of the agreed upon contract they are not

released. At this stage it might become obvious to the organization that there was a

misunderstanding or an assumption made that was to explicitly stated, and thus the results

leak information that the organization does not want to leave its network. In either case the

results would not be released the problems with the results sets would be brought up directly

with the researcher. Some of the issues may have simply been a misunderstanding, or the

results were not formatted correctly and the researcher may be given a chance to fix the VM

www.manaraa.com

 22

and the experiment rescheduled. It might be that the researcher thought that they could get a

little bit extra data, in which case the organization may feel a trust violation has occurred and

scrap the experiment and future work with the researcher. Another possibility is that for one

reason or another the results were not written to the results section.

If the results were not written then the researcher would be notified that there was a

problem with the VM and that the results were not where they were expected to be. The

researcher would be given the opportunity to see if they had a similar error in there local test

and given a chance to fix it and reschedule. If the VM crashed it would be rescheduled to run

later when there is an opening on the server for experiments. The researcher would still be

notified of the failed attempt.

If the results contain no extra data, meet policy, and are formatted as agreed upon,

they are released to the researcher. The results are than analyzed and evaluated and added to

the research paper which is then published.

www.manaraa.com

 23

CHAPTER 4. TEST SETUP

There has been a base system implemented with a larger test run scheduled for IT

Olympics 2009 at Iowa State University. The test system includes a host server and then

multiple experiment VM running at the same time. The test system host setup will be

described followed by the preliminary test and then the scheduled full feature test.

4.1 Host System

The test system is a dell PowerEdge1950 with an Intel Xeone5345 quad core

processors, 2 sata 7200 rpm 160 gb hard disks, 4 Gb RAM, and 3 1000/100/10 network

adapters. The processor supports Intel’s virtualization instructions so can be used in

conjunction with KVM as a Virtual machine manager. This system will function for the tests

and be able to handle all the test situations.

4.1.1 Operating system

The Operating selected was Debian based Ubuntu Server 8.10 this was choose due to

implementer familiarity with the operating system. Debian is a Linux distribution that has a

KVM port. The other choose would have been to use Fedora, but with the ease of use of

Ubuntu and its fast growing user base, future researchers may have more familiarity with

Ubuntu since it primarily used KVM and Qemu as VMM over Red Hat and Fedora using

XEN, until recently. During installation the Virtualization option was not selected and KVM

was not installed. If this option is not installed at installation it can be installed by “sudo apt-

get install KVM.” Other packages that needed to be installed are uml-tools, build-essentials,

gcc, g++, python, brctl, and ebtables. Because UML-tools in Debian installs a version of

www.manaraa.com

 24

tunctl that only creates tun device and not tap devices as discussed earlier, one needs to

download the source code for tunctl and build the tool. Once the tool has been built it needs

mv so that it replaces the currently installed version in /sbin.

4.2 Alpha test

The Alpha Test was limited in its scope testing the core most functionality of project.

The alpha test was performed during a Cyber Defense Competition at Iowa State University.

The test consisted of two experiment VMs and no filtering. Due to design complications

prior to the test a different test solution was used. The alternate solution involved using VM-

Ware ESXi and carefully assigned virtual switches to simulate the environment of the

original test system with bridged network interfaces. The challenges that were seen during

this test were resolved two days after the test was ran. The challenges steamed from the

default UML-tools installation of tunctl only creating tun devices and thus forcing the

bridges that were in promisc mode to function as switches since the interface that were bound

to the bridges were IP devices and not Ethernet devices, so only traffic bound for the virtual

interface would reach the virtual interface and not all traffic.

4.2.1 Network for alpha test

The network for the alpha is similar to the network for the Full feature test only fewer

systems were online for the test. Figure 7 below shows a view of the network and where the

Host Os server was listening and thus where the experiment virtual machines were listening.

www.manaraa.com

 25

Figure 8. Alpha test network

Blue teams (defense) networks had a ftp, web, rdp, and cvs server running on the

networks. There were approximately 14 blue team networks each with its own IP range and

network traffic. All out bound and inbound traffic to a team’s network got routed through

www.manaraa.com

 26

the ISEAGE Internet Scale Event Attack Generation Environment cluster, and then copies of

those packets were dumped out to a hub in which the tap interface of the Host Server was

listening on.

Red teams (attack) network consist of many different IP address ranges in which any

machine connected to the network can acquire an address in any of the provided IP ranges.

This is the attacker’s network, where all official attacks on the Blue teams should come from.

All out bound and inbound traffic to the red team network get routed through the ISEAGE

cluster, to the appropriate location and then copies of those packets were dumped out to a

hub in which the tap interface of the Host Server was listening on.

The Green (everyday users) network is to simulate users that access services from

outside the firewall of a team. All traffic is routed through ISEAGE and a copy of the traffic

is based out to the hub that the Host Server is listening on.

All Contest traffic is copied and then seen by the host server for the experiment VMs

to run their tools on.

4.2.2 Virtual machines for alpha test

The Alpha test consisted of two virtual machines; each virtual machine network

interface was bridged to the host machines network interface that is listening at the TAP

point. There was no ebtables in place; this test was to look at the performance and packet

loss and to test whether or not the traffic is seen by the VMs. So in this test it appears as if

both experiment VMs are directly listening on the tap interface.

Experiment Virtual Machine 1 was designed to test the ability to run snort on a

Virtual machine since during an attack multiple snort alerts should be generated. Due to the

www.manaraa.com

 27

RAM constraints of the virtual machine being set to 512 megs of RAM, the “lowmem”

option of snort need to be enabled. This was a testing the ability to generate results and then

copy them to a results section of the VM to be pulled off. The virtual machine operating

system was Ubuntu 8.10 server with as few features installed as possible. Snort was then

installed and configured start at boot and listen on the virtual machines network interface.

Then the Virtual machines network device was configured statically to have no IP address

and be in promisc mode. In this mode the interface listens to all inbound traffic. Then a

CRON job (a command to be executed at an assigned time) was added to copy the snort log

file from its default directory to /results directory on disc 30 minutes after the contest was

scheduled to end. This way the researcher could follow the procedure set forth to remove the

results and analyze them.

Experiment virtual machine 2 was designed to test the performance of the system and

check the amount of packet lose between host network adapter and virtual machine network

adapter. The contest ran for 8 hours with high and low bandwidth peaks so the packet lose

percentage over that time frame would give an idea of the amount of packet lose to expect in

the system. The virtual machine was a simple Ubuntu 8.10 server install. At boot the

machine was scheduled to write the packet count seen by the interface to a file. Then 30

minutes after the contest was scheduled to end it was to append the packet count seen by the

interface to the same file written earlier in the results section on disk.

4.2.3 Results for alpha test

Results of the experiment virtual machines in the test were varied. Virtual machine 1

results worked. The snort log detected 451 events varying from scans to web server directory

www.manaraa.com

 28

traversal. The results were written to disk and the script in appendix C was used mount the

virtual disk on the host OS and then to copy the results folder from the virtual machine disk

to the host OS where the results were analyzed. Virtual Machine 2 however did not work out

so well. The results file showed 0 as the first entry written into the file at boot since the

interface had yet to see any packets. That was the only line in the file, it never wrote the last

entry into the file. It was determined the virtual machines system clock was not accurately

set so that the CRON job used to write the total number of packets seen by the interface after

the competition was over never ran. The lesson learned for future researcher is to check that

the system clock is accurately set.

4.2.4 Test system fix for alpha test

After the contest was complete and before the network was fully taken offline the

problem with the original test system setup was determined to be a custom compiled version

of tunctl. After compiling from source the following WireShark screenshot was taken.

Figure 8 is the WireShark image, and it shows that the problem was resolved with a source

compile.

www.manaraa.com

susta

netwo

mach

bridg

confi

Since

Figur

name

The wire

ins some tra

ork is simula

hine is acting

ged network

igured on it.

e the Wiresh

re 7 coincide

es on the virt

F

shark image

affic lose. Th

ated on one p

g like a gatew

connections

 Anything th

hark image w

e with the int

tual machine

Figure 9. Al

e shows that

he network t

physical serv

way to the ot

s which I rep

hat is not in

was taken wh

terface name

es.

29

lpha test Wi

traffic does

that the Wire

ver with 4 v

ther virtual m

present with

a VM box is

hile running

es on the phy

ireShark fix

travel throu

eShark imag

irtual machi

machines. T

a hub. The V

s configured

on the host s

ysical server

x

gh the virtua

ge is shown i

nes. The fir

That virtual m

VM Gatewa

d on the phys

server, the in

r and not tha

al machines

in Figure 9.

rst Virtual

machine has

ay has a brid

sical server.

nterface nam

at of the inter

and

The

ge

mes in

rface

www.manaraa.com

 30

Figure 10. Virtual network configuration for Figure 6

4.3 Full feature beta test

The Beta test is to test most of the feature of the proposed system. The propose

original host operating system setup will be used. The Beta test will be conducted at IT

Olympics on April 20th-21st. The test shall consist of 4 virtual machines, the host box will be

running a WireShark window to keep track of all packet reaching virtual interfaces. The first

virtual machine shall be used a base for snort alerts. The second virtual machine shall be

used with an HTTP filter and snort to test port filters in combination with a tool. The 3rd

virtual machine will be counting ssh packets without a filter, the 4th virtual machine will be

counting ssh packets with port 22 being filtered.

www.manaraa.com

 31

4.3.1 Network for beta test

The network for the beta is similar to the network for the alpha test only more

systems will be online for the test. Figure 10 below shows a view of the network and where

the Host Os server will be listening and thus where the experiment virtual machines will be

listening.

Figure 11. Beta test network

www.manaraa.com

 32

Blue teams (defense) networks will have a ftp, web, remote desktop, and cvs server

running on their networks. There are approximately 14 blue team networks each with its

own IP range and network traffic. All out bound and inbound traffic to a team’s network get

routed through the ISEAGE Internet Scale Event Attack Generation Environment cluster, and

then copies of those packets were dumped out to a hub in which the tap interface of the host

Server will be listening on.

Red teams (attack) network consist of many different IP address ranges in which any

machine connected to the network can acquire an address in any of the provided IP ranges.

This is the attacker’s network, where all official attacks on the Blue teams will come from.

All out bound and inbound traffic to the red team network get routed through the ISEAGE

cluster, to the appropriate location and then copies of those packets were dumped out to a

hub in which the tap interface of the Host Server was listening on.

The Green (everyday users) network is to simulate users that access services from

outside the firewall of a team. All traffic is routed through ISEAGE and a copy of the traffic

is based out to the hub that the Host Server is listening on.

All contest traffic is copied and then seen by the host server for the experiment virtual

machines to run their tools on. This contest is using vlans to manage traffic which some

organizations use and will test the ability to work on a network with vlans.

4.3.2Virtual machines for beta test

The Beta test consisted of four virtual machines; each virtual machine network

interface was bridged to the host machines network interface that is listening at the TAP

www.manaraa.com

 33

point. There will be ebtables in place; this test is to look at the performance, packet loss, to

test whether or not the traffic is seen by the virtual machines, and to see if the ebtables is an

effective way to do packet filtering. So in this test it appears as if all experiment virtual

machines are directly listening on the tap interface.

Experiment Virtual Machine 1 will be designed to get a baseline of results for running

snort on a virtual machine during the contest. Since during the attack phase multiple snort

alerts should be generated. The physical server is limited by memory constraints, so the

virtual machines are limited by ram constraints. The virtual machine’s ram limit will be set

to 512 megabytes of RAM, the “lowmem” option of snort needs to be enabled. 20 minutes

after the contest is scheduled to end the virtual machine shall copy the snort result log over to

its /results directory. The virtual machine operating system will be Ubuntu 8.10 server with

as few features installed as possible. Snort was then installed and configured start at boot

and listen on the virtual machines network interface. Then the virtual machine’s network

device was configured statically to have no IP address and be in promisc mode. In this mode

the interface listens to all inbound traffic.

Experiment Virtual Machine 2 was designed to compare a virtual machine with a

filter in front of it to a baseline of results for running snort on a virtual machine during the

contest. Since during the attack phase multiple snort alerts should be generated, this virtual

machine will have a filter on the interface to prevent http traffic (port 80) from reaching the

interface and thus the snort alerts generated off of port 80 will not be seen. The physical

server is limited by memory constraints, so the virtual machines are limited by ram

constraints. The virtual machine’s ram limit will be set to 512 megabytes of RAM, the

“lowmem” option of snort needs to be enabled. 20 minutes after the contest is scheduled to

www.manaraa.com

 34

end the virtual machine shall copy the snort result log over to its /results directory. The

virtual machine operating system will be Ubuntu 8.10 server with as few features installed as

possible. Snort was then installed and configured start at boot and listen on the virtual

machines network interface. Then the virtual machine’s network device was configured

statically to have no IP address and be in promisc mode. In this mode the interface listens to

all inbound traffic.

 Experiment Virtual Machine 3 is designed to gather baseline data about the traffic

that the interface sees. The virtual machine operating system will be Ubuntu 8.10 server

with as few features installed as possible. The virtual machine will be running a custom

libpcap application designed to keep track of the total number of Ethernet, ARP, ICMP, http,

and SSH, packets seen. SSH and HTTP will be monitored by the looking for source and

destination ports of 22 or 80 respectively. The application will be configured to start at boot

and listen on the virtual machines network interface. Then the Virtual machine’s network

device will be configured statically to have no IP address and be in promisc mode. In this

mode the interface listens to all inbound traffic.

Experiment Virtual Machine 4 is designed to gather data about the traffic that the

interface sees, with a filter in place. The virtual machine operating system will be Ubuntu

8.10 server with as few features installed as possible. The virtual machine will be running a

custom libpcap application designed to keep track of the total number of Ethernet, ARP,

ICMP, http, and SSH, packets seen. SSH and HTTP will be monitored by the looking for

source and destination ports of 22 or 80 respectively. The application will be configured to

start at boot and listen on the virtual machines network interface. There will be a filter in

place to block SSH (port 22) traffic from reaching the virtual machine. Then the virtual

www.manaraa.com

 35

machine’s network device will be configured statically to have no IP address and be in

promisc mode. In this mode the interface listens to all inbound traffic.

4.3.3 Traffic recorder

In addition to the NEMESIS Node, another machine will be listening at the same

point as the NEMESIS node to record all network traffic seen. This is so that a test can be

conducted on the use of TCPReplay to replay the traffic back to the virtual interfaces, and see

if the same results are achieved.

www.manaraa.com

 36

CHAPTER 5. CONCLUSION

NEMESIS is a system level approach to collecting and using private trace data that

has been historically hard to gain access to. Nemesis is a framework that allows researchers

to build their experiment with the tools they need, and with the only restrictions being, disk,

processor and ram usage. Nemesis allows researchers to build their experiments it also

allows for policy to be enforced by the trace data owner. The policy can be enforced on the

type and quality of data that the researcher’s experiment virtual machine sees. The policy

also comes in to play on what data and results the researcher is allowed to take out of the

network. The system level approach allows for a security n depth model.

5.1 Successes

Using a virtual machine as the experiment benefits the researcher and the

organization. The researcher benefits because they can use multiple tools running on their

experiment virtual machine and correlate the results as opposed to previous solutions that

require the researchers to quarry a database, and or write their applications in a custom

programming language. The organization benefits from a security in depth model instead of

a basic on layer of anonymization. Trace data anonymization can be seen as security through

obscurity which has long been seen as a bad approach, in anonymization of trace data, Pang

proved that this was the fact when he reversed the network topology [Pang 4].

Anonymization of trace data can be seen as one layer to help protect the organization private

information. The NEMESIS solution allows for firewall rules to prevent some traffic from

reaching the virtual machines, it also allows for some control over what results leave the

www.manaraa.com

 37

organization, to help prevent against future attacks and network topology leaks. The use of

virtual machines also means that the experiments can be restricted from the network as a

whole and be isolated, so that they can not affect the network. The system allows for most

of Saltzer’s and Schroder’s design principles.

Principle of least privilege is the principle that says that objects and subjects should

have sufficient privileges to do what they need to do and nothing more. When using virtual

machines the experiment runs as a virtual machine, but the user that launches the virtual

machines determines the access rights of the virtual machine on the host machine. This

allows for the ability to restrict access and privileges on the host OS. Principle of fail-safe

defaults means deny all by default and allow rights and privileges as needed. In the case of

the virtual machines they need privileges to /dev/tun, nut do not need access to a lot of other

host OS devices. Principle of economy of mechanism is reached by having a simple virtual

machine framework that experiments are just deployed to and then the solution uses the

existing network devices to handle network traffic to prevent over complicating things.

Principle of open design is achieved by publishing the frame work and using open source

software in the implementation. Principle of separation of privilege is achieved by the policy

management system to restrict the results that leave along with the traffic that it sees.

Principle of least common mechanism depending on virtual machine implementation this can

be achieved. If the virtual machines’ disks are held on a cloud style NAS then the disk arrays

and read covert channel is removed, if there is enough RAM in the machine then that will be

removed, but there is always some common mechanisms like hardware buffers that are

always shared. Principle of psychological acceptability is achieved due to fact that

researchers have the ability to build a VM and have control over the disk image of the

www.manaraa.com

 38

experiment and the organization has control over the hardware and results that leave there

network.

5.2 Limitations

This Solution is not without its limitations. Currently the filtering is not capable to do

deep packet inspection on packets and filter based on that, however with more work this may

be possible.

Currently the policy management of results is checked by hand and not by an

automated system. While using one way network taps, the system would need to join the

network traces before replaying it on to the interfaces. Virtual machines are limited by size,

RAM, and CPU, so the total number and what is doable with the virtual machines are

determined by how much of the physical assets are allocated to the virtual machines.

Another limitation for the system is that the trace data is not published, so every time

the researcher wants to run another experiment has to reach an agreement with the

organization in order to gain access to the data again. If the researcher is listening to a live

network feed then he cannot reproduce the test since the trace is not recorded.

www.manaraa.com

 39

CHAPTER 6. FUTURE WORK

There are areas that could benefit from future work. The system needs to be tested

with recorded trace data replayed over the virtual interface. The system needs to be tested

with recorded anonymized data played over the virtual interface.

The Policy management piece of the system could be expanded and fully

implemented so that it can be automated, including anonymizing data sets and replaying

them to a given virtual interface, and filtering those data sets based on the policies set forth

on what the experiment virtual machine can see.

Some of the networking utilities might benefit from a custom kernel module that is

different than a bridge; this would work with the policy manager so that the data sets might

be pushed to two virtual interfaces at the same time.

Since in the case of the test the researcher and trace owner was the same the policy

negotiations were not test and need to be tested.

www.manaraa.com

 40

APPENDIX A. BRCTL HELP

 brctl –addbr <bridgename> -- creates a bridge interface

 brctl –delbr <bridgename> -- deletes a bridge interface

 brctl –addif <bridgename> <interface name>-- adds an interface to a bridge interface

 brctl –delif <bridgename> <interface name>-- deletes an interface to a bridge

interface

revised

www.manaraa.com

 41

APPENDIX B. KVM HELP

The following is an excerpt from the man page of QEMU and are used in the test system for
more information please view the full man page written by Fabrice Bellard.

 You can connect a CDROM to the slave of ide0:

 qemu -drive file=file,if=ide,index=1,media=cdrom

 If you don’t specify the "file=" argument, you define an empty
 drive:

 qemu -drive if=ide,index=1,media=cdrom

 By default, interface is "ide" and index is automatically
 incremented:

 qemu -drive file=a -drive file=b"

 is interpreted like:

 qemu -hda a -hdb b

 -boot [a|c|d|n]
 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n).
 Hard disk boot is the default.
 -localtime
 Set the real time clock to local time (the default is to UTC time).
 This option is needed to have correct date in MS-DOS or Windows.

 Display options:

 -nographic
 Normally, QEMU uses SDL to display the VGA output. With this
 option, you can totally disable graphical output so that QEMU is a
 simple command line application. The emulated serial port is
 redirected on the console. Therefore, you can still use QEMU to
 debug a Linux kernel with a serial console.

 -vnc display[,option[,option[,...]]]
 Normally, QEMU uses SDL to display the VGA output. With this
 option, you can have QEMU listen on VNC display display and
 redirect the VGA display over the VNC session. It is very useful

www.manaraa.com

 42

 to enable the usb tablet device when using this option (option
 -usbdevice tablet). When using the VNC display, you must use the -k
 parameter to set the keyboard layout if you are not using en-us.
 Valid syntax for the display is

 Network options:

 -net nic[,vlan=n][,macaddr=addr][,model=type]
 Create a new Network Interface Card and connect it to VLAN n (n = 0
 is the default). The NIC is an rtl8139 by default on the PC target.
 Optionally, the MAC address can be changed. If no -net option is
 specified, a single NIC is created. Qemu can emulate several
 different models of network card. Valid values for type are
 "i82551", "i82557b", "i82559er", "ne2k_pci", "ne2k_isa", "pcnet",
 "rtl8139", "e1000", "smc91c111", "lance", "mcf_fec" and "usb". Not
 all devices are supported on all targets. Use -net nic,model=?
 for a list of available devices for your target.

 -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
 Connect the host TAP network interface name to VLAN n and use the
 network script file to configure it. The default network script is
 /etc/qemu-ifup. Use script=no to disable script execution. If name
 is not provided, the OS automatically provides one. fd=h can be
 used to specify the handle of an already opened host TAP interface.
 Example:

 qemu linux.img -net nic -net tap

www.manaraa.com

 43

APPENDIX C. MOUNT SCRIPT

mount –t ext3 –o loop, offset=32256 /path/to/image /mnt/point

cp /mnt/point/results results/vm#

 Very basic setup guide

1) Install OS (in guide ubuntu server 8.10)

2) In installation select only to have ssh server option not virtualization.

3) When done installing verify you can ssh into the server, go to a location and ssh.

4) Run commands

a. sudo apt-get update

b. sudo apt-get upgrade

c. sudo apt-get install kvm xserver-xorg-core uml-utilities ebtables gcc g++

python build essential vncviewer gcj ethtool wireshark kpartx

5) verify that you can use x-forwarding over ssh if you are ssh in.

6) kvm-img create –f raw diskname.img size{numberM, number G}

7) recompile tunctl from source and copy into /usr/sbin/

http://sourceforge.net/project/showfiles.php?group_id=233549

8) sample network creation deletion script customize for your bridge needs

a. Script

#!/bin/bash

www.manaraa.com

 44

id of the user running qemu (kvm)
USERID=0000

number of TUN/TAP devices to setup
NUM_OF_DEVICES=5

case $1 in
 start)
 modprobe tun
 ifconfig eth1 0.0.0.0
 echo -n "Setting up bridge device br0"
 brctl addbr br0
 ifconfig br0 192.168.100.254 netmask 255.255.255.0 up
 for ((i=0; i < NUM_OF_DEVICES ; i++)); do
 echo -n "Setting up "
 tunctl -p -b -u $USERID -t qtap$i
 ifconfig qtap$i 0.0.0.0 promisc up
 done
 brctl addif br0 qtap0
#################
tap
#################
 brctl addbr brtap0
 ifconfig brtap0 up 0.0.0.0 promisc
 brctl addif brtap0 eth1
 brctl addif brtap0 qtap1
 brctl addif brtap0 qtap2
 brctl addif brtap0 qtap3
 brctl addif brtap0 qtap4
 ;;
 stop)
 for ((i=0; i < NUM_OF_DEVICES ; i++)); do
 ifconfig qtap$i down
brctl delif br0 qtap$i
 tunctl -d qtap$i
 done
 ifconfig br0 down
 brctl delif br0 qtap0
 brctl delbr br0
#################
tap
#################
 ifconfig brtap0 down
 brctl delif brtap0 eth1
 brctl delif brtap0 qtap1

www.manaraa.com

 45

 brctl delif brtap0 qtap2
 brctl delif brtap0 qtap3
 brctl delif brtap0 qtap4
 brctl delbr brtap0

 ;;
 *)
 echo "Usage: $(basename $0) (start|stop)"
 ;;
esac

9) Download the iso of the os you want to install

10) Build image kvm start command

a. kvm –hda /path/to/disk –cdrom /path/to/iso/or/cdrom/device –m amount \

 –boot d –net nic, macaddr=SomeValidMac. Model=e1000 \

–net tap, ifname=NetworkInterfaceName, script=no –localtime

11) Start image for setup /develop image

a. kvm –hda /path/to/disk –m amount – boot c \

–net nic, macaddr=SameValidMac. Model=e1000 \

–net tap, ifname=NetworkInterfaceName, script=no –localtime

12) Start for deploy

a. kvm -vnc none –hda /path/to/disk –m amount – boot c \

–net nic, macaddr=SameValidMac. Model=e1000 \

–net tap, ifname=NetworkInterfaceName, script=no –localtime

13) mount –t ext3 –o loop, offset=32256 /path/to/image /mnt/point

cp /mnt/point/results results/vm#

www.manaraa.com

 46

BIBLIOGRAPHY

[1] S. Coull, C. Wright, F. Monrose, M. Collins, and M. Reiter. Playing Devil’s
Advocate: Inferring Sensitive Information from Anonymized Network Traces. In
Proceedings of the Network and Distributed System Security Symposium, February
2007.

[2] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu.

Statistical Identification of Encrypted Web Browsing Traffic. In Proceedings of the
IEEE Symposium on Security and Privacy, 2002.

[3] S. Coull, M.P. Collins, C.V. Wright, F. Monrose, and M. Reiter. On Web Browsing

Privacy in Anonymized NetFlows. In Proceedings of the USENIX Security
Symposium, August 2007.

[4] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and packet

trace anonymization. ACM SIGCOMM Computer Communications Review,
36(1):29—38, 2006.

[5] J C Mogul and M Arlitt. Sc2d: An alternative to trace anonymization. In Proceedings

of the SIGCOMM 2006 Workshop on Mining Network Data, 2006.

[6] J. Xu, J. Fan, M. H. Ammar, , and S. B. Moon. Prefix-Preserving IP Address

Anonymization: Measurement-Based Security Evaluation and a New Cryptography-
Based Scheme. In Proceedings of the IEEE International Conference on Network
Protocols, 2002.

[7] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan

Venkitasubramaniam. l-Diversity: Privacy Beyond k-Anonymity. In Proceedings of
the 22nd IEEE International Conference on Data Engineering, 2006.

[8] Greg Minshall. tcpdpriv tool. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[9] Jinliang Fan, Jun Xu, Mostafa H. Ammar Cryptography-based Prefix-preserving

Anonymization http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/.

[10] Ruoming Pang and Vern Paxson. A High-level Programming Environment for Packet

Trace Anonymization and Transformation. In Proceedings of ACM SIGCOMM,
2003.

[11] D. Koukis, S. Antonatos, and K. Anagnostakis. On the privacy risks of publishing

anonymized ip network traces. In Proceedings of Communications and Multimedia
Security, pages 22–32, October 2006.

www.manaraa.com

 47

 [12] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and E.P. Markatos. A
generic anonymization framework for network traffic. In Proceedings of the IEEE
International Conference on Communications (ICC 2006), June 2006.

[13] Jelena Mirkovic. Privacy-safe network trace sharing via secure queries. In NDA‘ 08:

Proceedings of the 1st ACM workshop on Network data anonymization, pages 3–10,
New York, NY, USA, 2008. ACM.

[14] T. Brekne, A. Arnes, and A. Sleb. Anonymization of ip traffic monitoring data attacks

on two prefix-preserving anonymization schemes and some proposed remedies. In
Proceedings of the Workshop on Privacy Enhancing Technologies, page 179196,
May 2005.

[15] Lobster web page. http://www.ist-lobster.org/publications/deliverables/D1.1a.pdf.

[16] TCPDump web page. http://www.tcpdump.org/.

[17] Tunctl web page. http://tunctl.sourceforge.net/.

[18] Lennert Buytenhek Brctl man page

http://www.linuxcommand.org/man_pages/brctl8.html

[19] KVM web page http://www.linux-kvm.org/page/Main_Page

[20] Fabrice Bellard KVM man page http://linux.die.net/man/1/qemu-kvm

[21] LBNL/ICSI enterprise tracing project. http://www.icir.org/enterprise-tracing/.

[22] Lennert Buytenhek brctl man page

www.manaraa.com

 48

ACKNOWLEDGEMENTS

I would like to thank my wife first and foremost for everything, from late nights to

offloading of stress that I have put her through while writing this. I would like to thank the

friends that I used as sounding boards. I would like to thank Doug Jacobson and Steve

Russell for the support they should me throughout my college career. Finally Thomas

Daniels my major professor deserves a lot of credit for all of the help and guidance he has

shown me. He has help with the idea, was a sounding board for me throughout college, and

listened when I was stressed.

	2009
	Virtualized network framework solution to collecting private research data NEMESIS: Network Experimentation and Monitoring in Environments Safely In-Situ
	Alexander Nicholas Pease
	Recommended Citation

	Microsoft Word - Thesis.docx

